Tetrahedron Letters No. 49, pp. 3767-3773, 1964. Pergamon Press Ltd. Printed in Great Britain.

> THE DITERPENOIDS OF ERYTHROXYLON MONOGYNUM - IV ALLODEVADAROOL, DEVADAROOL AJD HYDROXYDEVADAROOL^{*}

R. Soman, Sukh Dev and (in part) R.Misra and R.C.Pandey National Chemical Laboratory, Poona (India)

(Received 23 October 196+)

In continuation of our previous work^{1,2,3} we wish to report the complete structure elucidation of allodevadarool, devadarool and hydroxydevadarool.

Allodevadarool

Allodevadarool (compound C_2^{-1}), $C_{20}H_{34}O_2$ (m.p. 147-148[°]; $\lceil \alpha \rceil_0^{28}$ +79.12, CHCl₃) has the following structural features: three methyl groups, all quaternary (NMR spectrum⁺: 3H sharp singlets at 46, 55 and 64 cps, cf. devadarool²); $\frac{C-C}{C}$ $>\equiv$ CH₂ (IR spectrum: 8) $C - C$ \rightarrow $\frac{1640}{100}$ (in spectrum: 895, 1640, 3100 cm^{-1} ; NMR spectrum: 2H singlet at 271 cps); -CHOH.CH₂OH (NaIO4 cleavage; IR spectrum: 3400, 1087, 1066, 1035 and 1015 cm^{-1} , cf. devadarool²; NMR spectrum: 1H and 2H signals centred at lS2 and 210 cps respectively, cf. devadarool²). From its end absorption (ϵ_{210} 330, ϵ_{215} 70)

Communication No. 735, National Chemical Laboratory, Poona.

 $+$ All NMR spectra were measured in 10-20% solutions in \texttt{CCl}_4 or \texttt{CDCL}_3 on a Varian A-60 spectrometer; the signals are recorded *in* cps from tetramethylsilane as cero.

³⁷⁶⁷

and the above NMR data, it is clear that allodevadarool possesses only one ethylenic linkage and consequently should be tricyclic. Dehydrogenation with selenium yielded 1,7-dimethylphenantbrene. The above structural features cannot be incorporated in a 'normal' diterpencid tricyclic framework and consequently allodwadarool must possess a rearranged diterpene skeleton. Two structures (I, II) appeared attractive from biogenetic considerations:

NaIO₄ oxidation of allodevadarool yielded an aldehyde (NMR signal for the aldehyde proton: 1H singlet at 660 cps) which on Wolff-Kishner reduction yielded a mixture of saturated⁴ (III; ε_{215} 421. NMR spectrum: No vinyl protons, quaternary methyl signals at 42, 47, 63 and 53 cps) and unsaturated hydrocarbon (IV; IR spectrum: $>C = CH_0$) 1635, 898 cm⁻¹. NMR spectrum: \geq \subset \subset \Box ₂, 2H singlet at 264 cps; quaternary methyl signals at 44, 54, 64 and 63 cps). Since, the NM? signal of a quaternary methyl In IV had shifted upfield in the saturated compound III^5 , structure I vas preferred for allodwadarool. This was confirmed as follows: ozonolysis of allodevadarool followed by $NaIO₄$

cleavage and Wolff-Xishner reduction yielded a bls-nor hydrocarbon, $C_{18}H_{32}$, ($[\alpha]_D + 26^{\circ}$) which had its IR spectrum superimposable on that of compound V ($\left[\alpha\right]_D$ -29⁰) described by Kitahara and his co-workers^{6,7}; since the rotations are of opposite sign, the bls-nor-hydrocarbon from allodevadarool nust be represented by the antipode of V, for which the absolute stereochemistry has been established⁷. Next, the stereochemistry of the α -glycol side-

chain at $C_{1,3}$ was determined. Na^{IO}4 cleavage followed by oxidative ozonolysis yielded a bis-nor keto acid $(C_{18}H_{28}O_3,$ m.p. 208-210[°]. Methyl ester, m.p. 86-87[°], $[\alpha]_0$ +53[°]) which was found to be different (IR spectrum) from the keto-acid VI (m.p. 210-212[°]; Methyl ester, m.p. 98-100[°], [α]₁ -28.4[°]), a degradation product of dolabradiene^{6,7}.

The above considerations lead to the establishment of the absolute stereostructure of allodevadarool as VII*.

Devadarool

During the course of above work It was found that the nor-hydrocarbon III was, surprisingly, identical (GLC, IR and NMR) with the major hydrogenation (PtO₂-AcOH) product of the nor-hydrocarbon (m.p. 54-55°) derived from devadarool². Hence the structure of the nor-hydrocarbon from devadarool must be represented by VIII⁺. Furthermore,

^{*}Very fecently Connolly et al.⁸ have described the isolation of three diterpene glycols - erythroxydlols X, Y and 2 from the same source. The first two compounds correspond to our compounds C₁ (devadarool) and C₂ (allodevadarool)¹
respectively. These authors have arrived at the same struc ture for their erythroxydiol Y (allodevadarool), but follow ing completely different procedures.

⁺This structure is still in accord with the behavlour of this compound on acid treatment reported earlier. However, this conflicts with the IR spectral data on the estimation of gem+dimethyl groups; since the structure of allodeva-
darool has been correlated in a straightforward manner with dolabradiene of well-established structure, it follows that the quantitative IR spectral measurements for the gem-dimethyl groups, even in a hydrocarbon, nust be taken with reserve.

acetylatlon of dihydroallodevadarool yielded a produot

 $(m.p. 114-115⁰)$ which was found to be identical (mixed m.p., IR spectrum) with one of the products of the catalytio hydrogenation of devadarool acetate. These *correla*tions establish the absolute stereostructure of devadarool **as** IX.

Connolly et al.^{8,9} in a very recent publication studied the structure of erythroxydiol X (identical with our devadarool) and preferred the struature IX to our earlier structure² on the basis of identity of the mass spectra of erythroxydiol X and Y. The present work provides decisive chemical evidence in favour of IX.

Hydroxydevadarool'

Hydroxydevadarool (compound D^1 , m.p. 181.5 - 182⁰, $triacetate$, m.p. 123-124 $^{\circ}$) is shown to possess the absolute stereostructure X. The relevant evidence is as follows. **Chromic** acid oxidation of compound D gave a nor-ketoaaid

With R. Misra and R.C.Pandey.

C_{l9}H₂₈0₃ (XI, m.p. 168-170°. <u>Methyl ester</u>, XII, m.p.68-70°), $C_{19}H_{28}O_3$ (XI, m.p. 168-170⁰. <u>Methyl ester</u>, XII, m.p.68-70⁰),
which on Wolff-Kishner reduction furnished an acid C_{l9}H₃₀0₂,
 $C_{H2}OH$

m.p. 196-198°, identified (IR, mixed m.p., TLC) as the noracid from devadarool². Thus, compound D is devadarool with another secondary hydroxyl function. The position of this hydroxyl group was evident from the NNR spectrum of the keto ester (XII), which displayed a doublet (1H) centred at 185 cps (J = 12 cps) assignable to a CH proton α to the carbonyl; this limits the position of the carbonyl function to C₇ and C₁₄. However, since the keto acid XI does not decarboxylate at \sim 200[°], position 14, which is β to the carboxyl is ruled out. Thus, the new hydroxyl function must be located at C₇. Moreover since, in the triacetate none of the quaternary methyl signals (54, 61, 68 cps) has suffered a diamagnetic shift 10 relative to the signals for devadarool diacetate $(45, 61, 61$ cps), the new hydroxyl group at C_7 shaald **be** equatorial.

- It gives us great pleasure in *recording* to Prof. Y. Kitahara for helpful co-operaply of samples from dolabradiene.

 $\langle \cdot, \cdot \rangle$

REFERENCES

10 H. Hikino, Y.Hikino, Y.Takeshita, K. Meguro and T. Takemoto, Chem. **Pharm.** Bill. (Japan) ll, 1207 (1963) .

 ~ 1000

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt$